Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Epidemiol Prev ; 44(5-6): 330-332, 2020.
Article in Italian | MEDLINE | ID: covidwho-2240354

ABSTRACT

Systematic reviews have shown a prevalence close to 20% of gastrointestinal symptoms in COVID-19 positive patients, with nearly 40% of patients shedding viral RNA in their faeces, even if it may not be infectious, possibly because of inactivation by colonic fluid.According to current evidence, this virus is primarily transmitted by respiratory droplets and contact routes, including contaminated surfaces. The virus is quite stable on stainless steel, being detected up to 48-72 hours after application. Therefore, some individuals can be infected touching common contaminated surfaces, such as bathroom taps. Taps can be underestimated critical points in the transmission chain of the infection. Indeed, just by turning the knob, people leave germs on it, especially after coughing over their hands, sneezing, and/or blowing their nose. After handwashing with soap, user take back their germs when turning the knob. Paradoxically, the following user collects the germs back on his/her fingers by implementing a preventive measure, maybe before putting food into the mouth or wearing contact lenses.The Italian National Institute of Health recommends to clean and disinfect high-touched surfaces, but it is unrealistic and inefficient to do so after each tap use. As an alternative, new toilets should install long elbow-levers - or at least short levers - provided that people are educated to close them with the forearm or the side of the hand. This is already a standard measure in hospitals, but it is particularly important also in high-risk communities, such as retirement homes and prisons. It would be important also in schools, in workplaces, and even in families, contributing to the prevention both of orofaecal and respiratory infections.In the meantime, people should be educated to close existing knobs with disposable paper towel wipes or with toilet paper sheets.


Subject(s)
Bathroom Equipment/virology , COVID-19/prevention & control , Fomites/virology , Hand Hygiene , Health Education , SARS-CoV-2/physiology , COVID-19/transmission , Equipment Contamination , Equipment Design , Feces/virology , Female , Humans , Italy , Male , SARS-CoV-2/isolation & purification , Touch
2.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1886449

ABSTRACT

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2 , Fomites , Pandemics , Viral Load
3.
Magnetochemistry ; 8(2):13, 2022.
Article in English | ProQuest Central | ID: covidwho-1715524

ABSTRACT

Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.

4.
Environ Sci Technol ; 55(7): 4162-4173, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1392751

ABSTRACT

We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing included articles. Overall, 96 268 articles were screened and 78 articles met inclusion criteria with outcomes in surface contamination, stability, and disinfection. Surface contamination was assessed on 3343 surfaces using presence/absence methods. Laboratories had the highest percent positive surfaces (21%, n = 83), followed by patient-room healthcare facility surfaces (17%, n = 1170), non-COVID-patient-room healthcare facility surfaces (12%, n = 1429), and household surfaces (3%, n = 161). Surface stability was assessed using infectivity, SARS-CoV-2 survived on stainless steel, plastic, and nitrile for half-life 2.3-17.9 h. Half-life decreased with temperature and humidity increases, and was unvaried by surface type. Ten surface disinfection tests with SARS-CoV-2, and 15 tests with surrogates, indicated sunlight, ultraviolet light, ethanol, hydrogen peroxide, and hypochlorite attain 99.9% reduction. Overall there was (1) an inability to align SARS-CoV-2 contaminated surfaces with survivability data and effective surface disinfection methods for these surfaces; (2) a knowledge gap on fomite contribution to SARS-COV-2 transmission; (3) a need for testing method standardization to ensure data comparability; and (4) a need for research on hygiene interventions besides surfaces, particularly handwashing, to continue developing recommendations for interrupting SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Fomites , Humans , Humidity
5.
J Infect Dev Ctries ; 14(7): 748-749, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-721542

ABSTRACT

The present communication emphasizes on a very pertinent issue of aerosol transmission, persistence and surface viability of novel SARS-CoV-2. Studies in this regard have been conducted on previously known human coronaviruses, and similarities have been drawn for novel SARS-CoV-2. The communication highlights that caution should be excercised while drawing inferences regarding the persistence and viability of the novel SARS-CoV-2 based on the knowledge of already known human coronaviruses.


Subject(s)
Aerosols , Betacoronavirus , Coronavirus Infections/transmission , Coronavirus/pathogenicity , Pneumonia, Viral/transmission , Air Microbiology , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus/physiology , Humans , Pandemics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL